Tuesday, September 23, 2008

Data mining

Data mining is the process of sorting through large amounts of data and picking out relevant information. It is usually used by business intelligence organizations, and financial analysts, but is increasingly being used in the sciences to extract information from the enormous data sets generated by modern experimental and observational methods.

It has been described as "the nontrivial extraction of implicit, previously unknown, and potentially useful information from data" and "the science of extracting useful information from large data sets or databases." Data mining in relation to enterprise resource planning is the statistical and logical analysis of large sets of transaction data, looking for patterns that can aid decision making.

Background
Traditionally, business analysts have performed the task of extracting useful information from recorded data, but the increasing volume of data in modern business and science calls for computer-based approaches. As data sets have grown in size and complexity, there has been a shift away from direct hands-on data analysis toward indirect, automatic data analysis using more complex and sophisticated tools.


The modern technologies of computers, networks, and sensors have made data collection and organization much easier. However, the captured data needs to be converted into information and knowledge to become useful. Data mining is the entire process of applying computer-based methodology, including new techniques for knowledge discovery, to data.