Forecasting, or predictive modeling provides predictions of future events and may be transparent and readable in some approaches (e.g., rule-based systems) and opaque in others such as neural networks. Moreover, some data-mining systems such as neural networks are inherently geared towards prediction and pattern recognition, rather than knowledge discovery.
Metadata, or data about a given data set, are often expressed in a condensed data-minable format, or one that facilitates the practice of data mining. Common examples include executive summaries and scientific abstracts.
Data mining relies on the use of real world data. This data is extremely vulnerable to collinearity precisely because data from the real world may have unknown interrelations. An unavoidable weakness of data mining is that the critical data that may expose any relationship might have never been observed. Alternative approaches using an experiment-based approach such as Choice Modelling for human-generated data may be used. Inherent correlations are either controlled for or removed altogether through the construction of an experimental design.
Recently, there were some efforts to define a standard for data mining, for example the CRISP-DM standard for analysis processes or the Java Data-Mining Standard. Independent of these standardization efforts, freely available open-source software systems like RapidMiner and Weka have become an informal standard for defining data-mining processes.
Sunday, October 19, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment